United States Naval Academy Mechanical Engineering Department

EM362 Reactor Physics I

Catalog Description: EM362 Reactor Physics I Credit: 3 (3-0-3)

An introductory course in nuclear reactors covering radioactivity, fission, neutron diffusion, material and geometric buckling, and the critical equation. Bare and reflected homogeneous reactors are studied.

Prerequisites: Differential Equations

Corequisites: none

Textbooks: Glasstone and Sesonske, *Nuclear Reactor Engineering, 4th Edition, Volume One*, Chapman and Hall, 1994

Course Director: Professor Harper

Objectives¹:

1. To give the student an introduction to nuclear energy, with an emphasis on radioactivity, nuclear reactors, fission, and the social purposes of nuclear power.

Course Content:

No.	Topic or Subtopic	hrs.
1	Nuclear energy fundamentals	1
2	Binding Energy and nuclear stability	2
3	Radioactive decay mechanisms, calculations	4
4	Types of radioactivity: alphas, betas, gammas, neutrons	3
5	Nuclear fission/critical mass	3
6	Neutron interactions and cross sections	6
7	Fission product activity	2
8	Neutron diffusion theory	8
9	Critical equation	2
10	Slowing down theory	4
11	Four factor formula	2
12	Criticality, two-group theory	2
13	Power reactors	1

Evaluation:

- 1. Quizzes
- 2. Homeworks
- 3. Exams

Acquired Abilities²:

- 1.1 Students will demonstrate knowledge of atomic and nuclear structures, including scientific annotation (1,2,3)
- 1.2 Students will demonstrate the ability to calculate binding energy and separation energy of the last neutron (1,2,3)
- 1.3 Students will demonstrate the ability to mathematically describe and quantify different types of radioactivity, including alpha, beta, gamma, and neutron radiation (1,2,3)
- 1.4 Students will be able to describe the fission process (1,2,3)
- 1.5 Students will demonstrate the ability to look up and use cross sections for calculations (1,2,3)
- 1.6 Students will demonstrate the ability to write and solve the neutron diffusion equation for infinite and finite, non-multiplying as well as multiplying homogeneous media (1,2,3)
- 1.7 Students will demonstrate the ability to calculate key parameters for neutron slowing down, including average collisions to thermalize, scattering angle, and moderator effectiveness (1,2,3)
- 1.8 Students will demonstrate the ability to set up and solve the 1-group and 2-group critical equations (1,2,3)
- 1.9 Students will demonstrate the ability to use the four factor formula in solving the reactor equation for various reactor materials and geometries (1,2,3)

Date of Latest Revision: 6 November 2001

¹ Letters in parenthesis refer to the Program Objectives of the Mechanical Engineering Program.

² Numbers in parenthesis refer to the evaluation methods used to assess student performance.